Let A = {xϵR :–1≤x≤1} =B and C={xϵR :X ≥ 0} and let S={(x, y) ϵA×B :x^2+y^2=1} and S0={(x, y)ϵA×C :x^2+y^2=1} Then A. S defines a function from A to B B. S0 defines a function from A to C C. S0 defines a function from A to B D. S defines a function from A to C