RD Sharma Chapter 5 : Algebra of Matrices Exercise 5.2 Solutions
- Compute the following sums: [[3, -2], [1, 4]]+[[-2, 4] [1, 3]] Watch Solution
- Compute the following sums: [[2, 1, 3], [0, 3, 5], [-1, 2, 5]] + [[1, -2, 3], [2, 6, 1], [0, -3, 1]] Watch Solution
- Let A=[[2, 4], [3, 2]], B=[[1, 3], [-2, 5]] and C=[[-2, 5], [3, 4]]. Find (i) 2A – 3B (ii) B – 4C (iii) 3A – C (iv) 3A – 2B + 3C Watch Solution
- Let A=[[2, 4], [3, 2]], B=[[1, 3], [-2, 5]] and C=[[-2, 5], [3, 4]]. Find 2A – 3B Watch Solution
- Let A=[[2, 4], [3, 2]], B=[[1, 3], [-2, 5]] and C=[[-2, 5], [3, 4]]. Find B – 4C Watch Solution
- Let A=[[2, 4], [3, 2]], B=[[1, 3], [-2, 5]] and C=[[-2, 5], [3, 4]]. Find 3A – C Watch Solution
- Let A=[[2, 4], [3, 2]], B=[[1, 3], [-2, 5]] and C=[[-2, 5], [3, 4]]. Find 3A – 2B + 3C Watch Solution
- If A=[[2, 3], [5, 7]], B=[[-1, 0, 2], [3, 4, 1]], C=[[-1, 2, 3], [2, 1, 0]], find (i) A+B and B+C (ii) 2B+3A and 3C-4B. Watch Solution
- If A=[[2, 3], [5, 7]], B=[[-1, 0, 2], [3, 4, 1]], C=[[-1, 2, 3], [2, 1, 0]], find A + B and B + C Watch Solution
- If A=[[2, 3], [5, 7]], B=[[-1, 0, 2], [3, 4, 1]], C=[[-1, 2, 3], [2, 1, 0]], find 2B+3A and 3C-4B. Watch Solution
- Let A=[[-1, 0, 2], [3, 1, 4]], B=[[0, -2, 5], [1, -3, 1]] and C=[[1, -5, 2], [6, 0, -4]]. Compute 2A-3B+4C. Watch Solution
- If A = diag(2, -5, 9), B = diag(1, 1, -4) and C = diag(-6, 3, 4), find (i) A – 2B (ii) B+C-2A (iii) 2A + 3B – 5C Watch Solution
- If A = diag(2, -5, 9), B = diag(1, 1, -4) and C = diag(-6, 3, 4), find A – 2B Watch Solution
- If A = diag(2, -5, 9), B = diag(1, 1, -4) and C = diag(-6, 3, 4), find B + C – 2A Watch Solution
- If A = diag(2, -5, 9), B = diag(1, 1, -4) and C = diag(-6, 3, 4), find 2A + 3B – 5C Watch Solution
- Given the matrices A=[[2, 1, 1], [3, -1, 0], [0, 2, 4]], B=[[9, 7, -1], [3, 5, 4], [2, 1, 6]] and C=[[2, -4, 3], [1, -1, 0], [9, 4, 5]] Verify that (A+B)+C=A+(B+C). Watch Solution
- Find matrices X and Y, if X + Y=[[5, 2], [0, 9]] and X – Y=[[3, 6], [0, -1]]. Watch Solution
- Find X, if Y = [[3, 2], [1, 4]] and 2X + Y = [[1, 0], [-3, 2]] Watch Solution
- Find matrices X and Y, if 2X – Y = [[6, -6, 0], [-4, 2, 1]] and X + 2Y = [[3, 2, 5], [-2, 1, -7]] Watch Solution
- If X – Y = [[1, 1, 1],[1, 1, 0],[1, 0, 0]] and X + Y = [[3, 5, 1],[-1, 1, 4],[11, 8, 0]], find X and Y. Watch Solution
- Find matrix A, if [[1, 2, -1], [0, 4, 9]] + A = [[9, -1, 4], [-2, 1, 3]] Watch Solution
- If A=[[9, 1], [7, 8]], B=[[1, 5], [7, 12]], find matrix C such that 5A + 3B + 2C is a null matrix. Watch Solution
- If A=[[2, -2], [4, 2], [-5, 1]], B=[[8, 0], [4, -2], [3, 6]], find matrix X such that 2A + 3X = 5B. Watch Solution
- If A=[[1, -3, 2], [2, 0, 2]] and B = [[2, -1, -1], [1, 0, -1]], find the matrix C such that A+B+C is zero matrix. Watch Solution
- Find x, y satisfying the matrix equations. [[x-y, 2, -2], [4, x, 6]] + [[3, -2, 2], [1, 0, -1]] = [[6, 0, 0], [5, 2x+y, 5]] Watch Solution
- Find x, y satisfying the matrix equations. [x, y+2, z-3] + [y, 4, 5] = [4, 9, 12] Watch Solution
- Find x, y satisfying the matrix equations. x[[2], [1]] + y[[3], [5]] + [[-8],[11]] = O Watch Solution
- If 2[[3, 4], [5, x]]+[[1, y], [0, 1]]=[[7, 0], [10, 5]]. find x and y. Watch Solution
- Find the value of λ., a non-zero scalar, if λ.[[1, 0, 2], [3, 4, 5]] + 2[[1, 2, 3], [-1, -3, 2]=[[4, 4, 10], [4, 2, 14]] Watch Solution
- Find a matrix X such that 2A + B + X = 0, where A = [[-1, 2], [3, 4]], B = [[3, -2], [1, 5]] Watch Solution
- If A=[[8, 0], [4, -2], [3, 6]] and B=[[2, -2], [4, 2], [-5, 1]], then find the matrix X of order 3×2 such that 2A + 3X = 5B. Watch Solution
- Find x, y, z and t, if 3[[x, y], [z, t]] = [[x, 6], [-1, 2t], [[4, x + y], [z + t, 3]] Watch Solution
- Find x, y, z and t if 2[[x, 5], [7, y-3]]+[[3, 4], [1, 2]] = [[7, 14], [15, 14]] Watch Solution
- If X and Y are 2×2 matrices, then solve the following matrix equations for X and Y. 2X + 3Y=[[2, 3], [4, 0]], 3X + 2Y = [[-2, 2], [1, -5]] Watch Solution
- In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges. Watch Solution
- The monthly incomes of Aryan and Babban are in the ratio 3:4 and their monthly expenditures are in the ratio 5:7. If each saves ₹15000 per month, find their monthly income using matrix method. This problem reflects which value? Watch Solution
ALGEBRA OF MATRICES – R.D. Sharma Class 12th Math
- Algebra of Matrices Exercise 5.1 Video Solution
- Algebra of Matrices Exercise 5.2 Video Solution
- Algebra of Matrices Exercise 5.3 Video Solution
- Algebra of Matrices Exercise 5.4 Video Solution
- Algebra of Matrices Exercise 5.5 Video Solution
- Algebra of Matrices Very Short Answer Questions (VSAQs) Video Solution
- Algebra of Matrices Multiple Choice Questions (MCQs) Video Solution