Class 12 Maths – RD Sharma Chapter 4 : Inverse Trigonometric Function Exercise 4.14 Solutions (Step-by-Step Guide)

RD Sharma Chapter 4 : Inverse Trigonometric Function Exercise 4.14 Solutions

  1. Prove the result : 2sin^-1(3/5) = tan^-1(24/7) Watch Solution
  2. Evaluate : tan{2tan^-1(1/5)-π/4} Watch Solution
  3. Evaluate : tan(1/2sin^-1(3/4)) Watch Solution
  4. Evaluate : sin(1/2cos^-1(4/5)) Watch Solution
  5. Evaluate : sin(2tan^-1(2/3)) + cos(tan^-1√3) Watch Solution
  6. Prove the result : tan^-1(1/4) + tan^-1(2/9) = (1/2)cos^-1(3/5) = (1/2)sin^-1(4/5) Watch Solution
  7. Prove the result : tan^-1(2/3) = (1/2)tan^-1(12/5) Watch Solution
  8. Prove the result : tan^-1(1/7) + 2tan^-1(1/3)=π/4 Watch Solution
  9. Prove the result : sin^-1(4/5) + 2tan^-1(1/3) = π/2 Watch Solution
  10. Prove the result : 2sin^-1(3/5) – tan^-1(17/31) = π/4 Watch Solution
  11. Prove the result : 2tan^-1(1/5) + tan^-1(1/8) = tan^-1(4/7) Watch Solution
  12. Prove the result : 2tan^-1(3/4) – tan^-1(17/31) = π/4 Watch Solution
  13. Prove the result : 2tan^-1(1/2) + tan^-1(1/7) = tan^-1(31/17) Watch Solution
  14. Prove the result : 4tan^-1(1/5) – tan^-1(1/239) = π/4 Watch Solution
  15. If sin^-1{2a/(1+a^2)} – cos^-1{(1-b^2)/(1+b^2)} = tan^-1{2x/(1-x^2)}, then prove that x = (a-b)/(1+ab) Watch Solution
  16. Prove that : tan^-1{(1-x^2)/2x} + cot^-1{(1-x^2)/2x} = π/2 Watch Solution
  17. Prove that : sin{tan^-1((1-x^2)/2x) + cot^-1((1-x^2)/(1+x^2))} = 1 Watch Solution
  18. If sin^-1(2a/(1+a^2)) + sin^-1(2b/(a+b^2)) = 2tan^-1x, prove that x = (a+b)/(1-ab) Watch Solution
  19. Show that 2tan^-1x + sin^-1(2x/(1+x^2)) is constant for x≥1, find that constant. Watch Solution
  20. Find the value of the tan^-1{2cos(2sin^-1(1/2))} Watch Solution
  21. Find the value of the cos(sec^-1x + cosec^-1x), |x| ≥ 1 Watch Solution
  22. Solve the following equation for x : tan^-1(1/4 + 2tan^-1(1/5) + tan^-1(1/6) + tan^-1(1/x) = π/4 Watch Solution
  23. Solve the following equation for x : 3sin^-1(2x/(1+x^2)) – 4cos^-1((1-x^2)/(1+x^2)) + 2tan^-1(2x/1-x^2) = π/3 Watch Solution
  24. Solve the following equation for x : tan^-1(2x/(1-x^2)) + cot^-1((1-(x^2))/2x) = 2π/3, x > 0. Watch Solution
  25. Solve the following equation for x : 2tan^-1(sin x) = tan^-1(2sec x), x ≠ π/2 Watch Solution
  26. Solve the following equation for x : cos^-1((x^2-1)/(x^2+1)) + 1/2 (tan^-1(2x/(1-x^2))) = 2π/3 Watch Solution
  27. Prove that 2tan^-1((x-2)/(x-1)) + tan^-1((x+2)/(x+1)) = π/4 Watch Solution
  28. Prove that 2tan^-1{√(a-b)/√(a+b)} .tan(θ/2) = cos^-1{(acosθ+b)/(a+bcosθ)} Watch Solution
  29. Prove that: tan^-1{2ab/(a^2-b^2)} + tan^-1{2xy/(x^2-y^2)} = tan^-1{2αβ/(α^2-β^2)} , where α=ax-by and β=ay+bx. Watch Solution
  30. For any a, b, x, y greater than 0, prove that: 2/3 (tan^-1{(3ab^2-a^3)/(b^3-3a^2b)} + 2/3 {(tan^-1(3xy^2-x^3)/(y^3-3x^2y)} = tan^-1{(2αβ/(α^2-β^2)}, where α = -ax+by, β = bx+ay. Watch Solution

INVERSE TRIGONOMETRIC FUNCTIONS R.D. Sharma Class 12th Math

  1. Inverse Trigonometric Functions Exercise 4.1 Video Solution
  2. Inverse Trigonometric Functions Exercise 4.2 Video Solution
  3. Inverse Trigonometric Functions Exercise 4.3 Video Solution
  4. Inverse Trigonometric Functions Exercise 4.4 Video Solution
  5. Inverse Trigonometric Functions Exercise 4.5 Video Solution
  6. Inverse Trigonometric Functions Exercise 4.6 Video Solution
  7. Inverse Trigonometric Functions Exercise 4.7 Video Solution
  8. Inverse Trigonometric Functions Exercise 4.8 Video Solution
  9. Inverse Trigonometric Functions Exercise 4.9 Video Solution
  10. Inverse Trigonometric Functions Exercise 4.10 Video Solution
  11. Inverse Trigonometric Functions Exercise 4.11 Video Solution
  12. Inverse Trigonometric Functions Exercise 4.12 Video Solution
  13. Inverse Trigonometric Functions Exercise 4.13 Video Solution
  14. Inverse Trigonometric Functions Exercise 4.14 Video Solution
  15. Inverse Trigonometric Functions Very Short Answer Questions (VSAQs) Video Solution
  16. Inverse Trigonometric Functions Multiple Choice Questions (MCQs) Video Solution

 

 

 

Spread the love

Leave a Comment

Your email address will not be published. Required fields are marked *