यदि किसी बहुपद को एक से अधिक बीजीय व्यंजक के गुणनफल के रूप में लिखा जाए तो उनमे से प्रत्येक को दिए हुए बहुपद का गुणनखंड कहते है |

जैसे : x2 + 3x +2 = (x + 1)(x + 2) , तो यहाँ   (x + 1) और (x + 2) बहुपद x2 + 3x +2 का गुणनखंड है |

बीजीय सर्वसमिका (Algebraic Identities ) : वह बीजीय समीकरण जो चरों के सभी मानों के लिए सत्य हो , बीजीय सर्वसमिका कहलाता है |

  1. (a + b)2 = a2 + 2ab + b2
  2. (a – b)2 = a2 – 2ab + b2
  3. a2 + b2 = (a + b)2 – 2ab
  4. a2 + b2 = (a – b)2 + 2ab
  5. a2 – b2 = (a + b)(a – b)
  6. (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
  7. (a + b – c)2 = a2 + b2 + c2 + 2ab – 2bc – 2ca
  8. (a – b + c)2 = a2 + b2 + c2 – 2ab – 2bc + 2ca
  9. (-a + b + c)2 = a2 + b2 + c2 – 2ab + 2bc – 2ca
  10. (-a – b + c)2 = a2 + b2 + c2 + 2ab – 2bc – 2ca
  11. (a – b – c)2 = a2 + b2 + c2 – 2ab + 2bc – 2ca
  12. (-a + b – c)2 = a2 + b2 + c2 – 2ab – 2bc + 2ca
  13. (-a – b – c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
  14. (a + b)3 = a3 + b3 + 3a2b + 3ab2 = a3 + b3 + 3ab(a + b)
  15. (a – b)3 = a3 – b3 – 3a2b + 3ab2 = a3 – b3 – 3ab(a – b)
  16. a3 + b3 = (a + b)(a2 -ab + b2) = (a + b)3 – 3a2b – 3ab2
  17. a3 – b3 = (a – b)(a2 +ab + b2) = (a – b)3 + 3a2b – 3ab2
  18. a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca) = 1/2 .(a + b + c) [ (a – b)2 + (b – c)2 + (c – a)2 ]
  19.  यदि a +b +c = 0 हो तो a3 + b3 + c3 = 3abc

Learn More Chapters

Spread the love

Leave a Comment

Your email address will not be published. Required fields are marked *