If α and β are the zeros of the quadratic polynomial f(x) = x² − px + q, prove that α²/β² + β²/α² = p⁴/q² − 4p²/q + 2
Video Explanation
Watch the video explanation below:
Proof
Given polynomial:
f(x) = x² − px + q
Let α and β be the zeros of the given polynomial.
Step 1: Find α + β and αβ
Comparing f(x) = x² − px + q with ax² + bx + c:
a = 1, b = −p, c = q
α + β = −b/a = p
αβ = c/a = q
Step 2: Find α²/β² + β²/α²
α²/β² + β²/α²
= (α⁴ + β⁴)/(α²β²)
= (α⁴ + β⁴)/(αβ)²
Since,
α⁴ + β⁴ = (α² + β²)² − 2α²β²
and
α² + β² = (α + β)² − 2αβ
Step 3: Substitute the Values
α² + β² = p² − 2q
α⁴ + β⁴ = (p² − 2q)² − 2q²
= p⁴ − 4p²q + 4q² − 2q²
= p⁴ − 4p²q + 2q²
Also,
(αβ)² = q²
Step 4: Final Calculation
α²/β² + β²/α²
= (p⁴ − 4p²q + 2q²)/q²
= p⁴/q² − 4p²/q + 2
Hence Proved
α²/β² + β²/α² = p⁴/q² − 4p²/q + 2
Conclusion
Thus, using the relationship between zeros and coefficients of the quadratic polynomial, the given identity is proved.