If α and β are the zeros of the polynomial f(x) = x² + px + q, find the polynomial whose zeros are (α + β)² and (α − β)²
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = x² + px + q
Let α and β be the zeros of the given polynomial.
Step 1: Find α + β and αβ
Comparing f(x) = x² + px + q with ax² + bx + c:
a = 1, b = p, c = q
α + β = −b/a = −p
αβ = c/a = q
Step 2: Find the New Zeros
First zero:
(α + β)² = (−p)² = p²
Second zero:
(α − β)² = (α + β)² − 4αβ
= p² − 4q
Step 3: Find Sum and Product of the New Zeros
Sum of new zeros:
p² + (p² − 4q) = 2p² − 4q
Product of new zeros:
p²(p² − 4q)
Step 4: Form the Required Polynomial
The required polynomial is:
x² − (sum of zeros)x + (product of zeros)
= x² − (2p² − 4q)x + p²(p² − 4q)
Final Answer
The required polynomial is x² − (2p² − 4q)x + p²(p² − 4q).
Conclusion
Thus, the polynomial whose zeros are (α + β)² and (α − β)² is x² − (2p² − 4q)x + p²(p² − 4q).