If α and β are the zeroes of the quadratic polynomial f(x) = ax² + bx + c, find the value of (1/α − 1/β)
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = ax² + bx + c
Let α and β be the zeroes of the given quadratic polynomial.
Step 1: Write the Known Relations
For a quadratic polynomial ax² + bx + c:
α + β = −b/a
αβ = c/a
Step 2: Find the Required Value
1/α − 1/β
= (β − α)/αβ
= −(α − β)/αβ
Step 3: Use the Identity for (α − β)
(α − β)² = (α + β)² − 4αβ
= (−b/a)² − 4(c/a)
= (b² − 4ac)/a²
∴ α − β = √(b² − 4ac)/a
Step 4: Final Calculation
1/α − 1/β
= − [ √(b² − 4ac)/a ] ÷ (c/a)
= − √(b² − 4ac) / c
Final Answer
The required value is − √(b² − 4ac) / c.
Conclusion
Thus, using the relationship between zeroes and coefficients of the quadratic polynomial, the value of (1/α − 1/β) is − √(b² − 4ac) / c.