If 4 is a zero of the cubic polynomial x³ − 3x² − 10x + 24, find its other two zeroes
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = x³ − 3x² − 10x + 24
Given that x = 4 is a zero of the polynomial.
Step 1: Verify x = 4 Using Factor Theorem
f(4) = (4)³ − 3(4)² − 10(4) + 24
= 64 − 48 − 40 + 24
= 0
∴ x − 4 is a factor of f(x)
Step 2: Divide the Polynomial by (x − 4)
x³ − 3x² − 10x + 24 ÷ (x − 4)
Using synthetic division:
4 | 1 −3 −10 24
4 4 −24
——————————–
1 1 −6 0
∴ Quotient = x² + x − 6
Step 3: Find the Remaining Zeroes
Solve:
x² + x − 6 = 0
Factorising:
(x + 3)(x − 2) = 0
∴ x = −3 or x = 2
Final Answer
The other two zeroes of the given polynomial are:
x = −3 and x = 2
Conclusion
Thus, the zeroes of the cubic polynomial x³ − 3x² − 10x + 24 are 4, −3 and 2.