Apply division algorithm to find the quotient q(x) and remainder r(x) when f(x) = 15x³ − 20x² + 13x − 12 is divided by g(x) = 2 − 2x + x²
Video Explanation
Watch the video explanation below:
Solution
Given:
f(x) = 15x³ − 20x² + 13x − 12
g(x) = 2 − 2x + x²
First arrange g(x) in descending powers of x:
g(x) = x² − 2x + 2
Step 1: Apply the Division Algorithm
According to the division algorithm,
f(x) = g(x) · q(x) + r(x)
where the degree of r(x) is less than the degree of g(x).
Step 2: Divide f(x) by g(x)
15x³ − 20x² + 13x − 12 ÷ (x² − 2x + 2)
First term:
15x³ ÷ x² = 15x
Multiply:
15x(x² − 2x + 2) = 15x³ − 30x² + 30x
Subtract:
(15x³ − 20x² + 13x) − (15x³ − 30x² + 30x)
= 10x² − 17x
Bring down −12:
10x² − 17x − 12
Next term:
10x² ÷ x² = 10
Multiply:
10(x² − 2x + 2) = 10x² − 20x + 20
Subtract:
(10x² − 17x − 12) − (10x² − 20x + 20)
= 3x − 32
Step 3: Identify Quotient and Remainder
Quotient, q(x) = 15x + 10
Remainder, r(x) = 3x − 32
Final Answer
Quotient: q(x) = 15x + 10
Remainder: r(x) = 3x − 32
Conclusion
Thus, by applying the division algorithm, when f(x) = 15x³ − 20x² + 13x − 12 is divided by g(x) = 2 − 2x + x², the quotient is 15x + 10 and the remainder is 3x − 32.