Find all zeros of the polynomial x⁴ + x³ − 34x² − 4x + 120, if two of its zeros are 2 and −2
Video Explanation
Watch the video explanation below:
Given
f(x) = x⁴ + x³ − 34x² − 4x + 120
Two zeros of the polynomial are:
x = 2 and x = −2
To Find
All the zeros of the given polynomial.
Solution
Step 1: Use the Given Roots to Form a Factor
Since 2 and −2 are zeros of f(x),
(x − 2) and (x + 2) are factors of f(x).
Multiply them:
(x − 2)(x + 2) = x² − 4
Step 2: Divide f(x) by (x² − 4)
Divide x⁴ + x³ − 34x² − 4x + 120 by x² − 4:
First term:
x⁴ ÷ x² = x²
Multiply:
x²(x² − 4) = x⁴ − 4x²
Subtract:
[x⁴ + x³ − 34x²] − [x⁴ − 4x²] = x³ − 30x²
Bring down remaining terms:
x³ − 30x² − 4x + 120
Next term:
x³ ÷ x² = x
Multiply:
x(x² − 4) = x³ − 4x
Subtract:
[x³ − 30x² − 4x] − [x³ − 4x] = −30x²
Bring down +120:
−30x² + 120
Next term:
−30x² ÷ x² = −30
Multiply:
−30(x² − 4) = −30x² + 120
Subtract:
(−30x² + 120) − (−30x² + 120) = 0
So the remainder is 0. This means x² − 4 divides f(x) exactly.
Quotient obtained:
x² + x − 30
Step 3: Factorise the Quadratic Quotient
x² + x − 30 = 0
We look for two numbers whose product is −30 and sum is +1:
They are +6 and −5.
∴ x² + x − 30 = (x + 6)(x − 5)
Thus the remaining zeros are:
x = −6 and x = 5
Final Answer
All the zeroes of the given polynomial are:
2, −2, −6 and 5
Conclusion
Hence, the polynomial x⁴ + x³ − 34x² − 4x + 120 has four zeroes: 2, −2, −6 and 5.