Given that x − √5 is a factor of the cubic polynomial x³ − 3√5x² + 13x − 3√5, find all the zeroes of the polynomial
Video Explanation
Watch the video explanation below:
Given
f(x) = x³ − 3√5x² + 13x − 3√5
One factor of the polynomial is:
x − √5
To Find
All the zeroes of the given polynomial.
Solution
Step 1: Use Factor Theorem
Since x − √5 is a factor of the polynomial, therefore
x = √5 is a zero of f(x).
Step 2: Divide f(x) by (x − √5)
Divide x³ − 3√5x² + 13x − 3√5 by (x − √5):
First term:
x³ ÷ x = x²
Multiply:
x²(x − √5) = x³ − √5x²
Subtract:
(x³ − 3√5x²) − (x³ − √5x²)
= −2√5x²
Bring down +13x:
−2√5x² + 13x
Next term:
−2√5x² ÷ x = −2√5x
Multiply:
−2√5x(x − √5) = −2√5x² + 10x
Subtract:
(−2√5x² + 13x) − (−2√5x² + 10x)
= 3x
Bring down −3√5:
3x − 3√5
Next term:
3x ÷ x = 3
Multiply:
3(x − √5) = 3x − 3√5
Subtract:
(3x − 3√5) − (3x − 3√5) = 0
So remainder is zero.
Quotient obtained:
x² − 2√5x + 3
Step 3: Find the Remaining Zeroes
Now solve the quadratic equation:
x² − 2√5x + 3 = 0
Split the middle term:
x² − √5x − √5x + 3 = 0
x(x − √5) − √5(x − √5) = 0
(x − √5)(x − √5) = 0
∴ x = √5 (repeated root)
Final Answer
All the zeroes of the given polynomial are:
√5, √5 and √5
Conclusion
Hence, the cubic polynomial x³ − 3√5x² + 13x − 3√5 has all three zeroes equal to √5.