If α, β and γ are the zeros of the polynomial f(x) = ax³ + bx² + cx + d, find the value of 1/α + 1/β + 1/γ
Video Explanation
Watch the video explanation below:
Given
f(x) = ax³ + bx² + cx + d
α, β and γ are the zeros of the polynomial.
To Find
The value of 1/α + 1/β + 1/γ.
Solution
For a cubic polynomial:
ax³ + bx² + cx + d
The relationships between zeros and coefficients are:
α + β + γ = −b/a
αβ + βγ + γα = c/a
αβγ = −d/a
Step 1: Write the Required Expression
1/α + 1/β + 1/γ
= (βγ + γα + αβ) / (αβγ)
Step 2: Substitute the Values
= (c/a) ÷ (−d/a)
= −c/d
Final Answer
1/α + 1/β + 1/γ = −c/d
Conclusion
Hence, if α, β and γ are the zeros of the polynomial f(x) = ax³ + bx² + cx + d, then the value of 1/α + 1/β + 1/γ is −c/d.