Solve the System of Linear Equations Using Cross-Multiplication Method
Video Explanation
Watch the video below to understand the complete solution step by step:
Solution
Question: Solve the following system of equations using cross-multiplication method:
(a + 2b)x + (2a − b)y = 2 …… (1)
(a − 2b)x + (2a + b)y = 3 …… (2)
Step 1: Write Equations in Standard Form
(a + 2b)x + (2a − b)y − 2 = 0 …… (1)
(a − 2b)x + (2a + b)y − 3 = 0 …… (2)
Step 2: Compare with ax + by + c = 0
From equation (1): a1 = (a + 2b), b1 = (2a − b), c1 = −2
From equation (2): a2 = (a − 2b), b2 = (2a + b), c2 = −3
Step 3: Apply Cross-Multiplication Formula
x / (b1c2 − b2c1) = y / (a2c1 − a1c2) = 1 / (a1b2 − a2b1)
Substitute values:
x / [ (2a − b)(−3) − (2a + b)(−2) ] = y / [ (a − 2b)(−2) − (a + 2b)(−3) ] = 1 / [ (a + 2b)(2a + b) − (a − 2b)(2a − b) ]
x / ( −6a + 3b + 4a + 2b ) = y / ( −2a + 4b + 3a + 6b ) = 1 / ( 10ab )
x / ( −2a + 5b ) = y / ( a + 10b ) = 1 / ( 10ab )
Step 4: Find the Values of x and y
x / ( −2a + 5b ) = 1 / ( 10ab )
⇒ x = (5b − 2a) / (10ab)
y / ( a + 10b ) = 1 / ( 10ab )
⇒ y = (a + 10b) / (10ab)
Final Answer
∴ The solution of the given system of equations is:
x = (5b − 2a) / (10ab)
y = (a + 10b) / (10ab)
Conclusion
Thus, by using the cross-multiplication method, we find that the solution of the given system of linear equations is ( (5b − 2a)/(10ab), (a + 10b)/(10ab) ).