Solve the System of Linear Equations Using Cross-Multiplication Method
Video Explanation
Watch the video below to understand the complete solution step by step:
Solution
Question: Solve the following system of equations using cross-multiplication method:
(a − b)x + (a + b)y = 2a2 − 2b2 …… (1)
(a + b)(x + y) = 4ab …… (2)
Step 1: Simplify Equation (2)
Expand equation (2):
(a + b)x + (a + b)y = 4ab …… (2)
Step 2: Write Equations in Standard Form
(a − b)x + (a + b)y − (2a2 − 2b2) = 0 …… (1)
(a + b)x + (a + b)y − 4ab = 0 …… (2)
Step 3: Compare with ax + by + c = 0
From equation (1): a1 = (a − b), b1 = (a + b), c1 = −(2a2 − 2b2)
From equation (2): a2 = (a + b), b2 = (a + b), c2 = −4ab
Step 4: Apply Cross-Multiplication Formula
x / (b1c2 − b2c1) = y / (a2c1 − a1c2) = 1 / (a1b2 − a2b1)
Substitute values:
x / [ (a + b)(−4ab) − (a + b)(−(2a2 − 2b2)) ] = y / [ (a + b)(−(2a2 − 2b2)) − (a − b)(−4ab) ] = 1 / [ (a − b)(a + b) − (a + b)(a + b) ]
x / [ (a + b)(2a2 − 2b2 − 4ab) ] = y / [ −2(a + b)(a2 − b2) + 4ab(a − b) ] = 1 / [ −2b(a + b) ]
x / [ 2(a + b)(a − b)2 ] = y / [ −2(a − b)(a + b)2 ] = 1 / [ −2b(a + b) ]
Step 5: Find the Values of x and y
x / [ 2(a + b)(a − b)2 ] = 1 / [ −2b(a + b) ]
⇒ x = (b − a)/b
y / [ −2(a − b)(a + b)2 ] = 1 / [ −2b(a + b) ]
⇒ y = (a − b)/a
Final Answer
∴ The solution of the given system of equations is:
x = (b − a)/b
y = (a − b)/a
Conclusion
Thus, by using the cross-multiplication method, we find that the solution of the given system of linear equations is ( (b − a)/b, (a − b)/a ).