Solve the System of Linear Equations Using Cross-Multiplication Method
Video Explanation
Watch the video below to understand the complete solution step by step:
Solution
Question: Solve the following system of equations using cross-multiplication method:
(b/a)x + (a/b)y = a2 + b2 …… (1)
x + y = 2ab …… (2)
Step 1: Convert Equation (1) into Linear Form
Multiply equation (1) by ab:
b2x + a2y = ab(a2 + b2) …… (1)
Step 2: Write Equations in Standard Form
b2x + a2y − ab(a2 + b2) = 0 …… (1)
x + y − 2ab = 0 …… (2)
Step 3: Compare with ax + by + c = 0
From equation (1): a1 = b2, b1 = a2, c1 = −ab(a2 + b2)
From equation (2): a2 = 1, b2 = 1, c2 = −2ab
Step 4: Apply Cross-Multiplication Formula
x / (b1c2 − b2c1) = y / (a2c1 − a1c2) = 1 / (a1b2 − a2b1)
Substitute values:
x / [ a2(−2ab) − 1(−ab(a2 + b2)) ] = y / [ 1(−ab(a2 + b2)) − b2(−2ab) ] = 1 / [ b2(1) − 1(a2) ]
x / [ −2a3b + ab(a2 + b2) ] = y / [ −ab(a2 + b2) + 2ab3 ] = 1 / ( b2 − a2 )
x / [ ab(b2 − a2) ] = y / [ ab(a2 − b2) ] = 1 / ( b2 − a2 )
Step 5: Find the Values of x and y
x / [ ab(b2 − a2) ] = 1 / ( b2 − a2 )
⇒ x = ab
y / [ ab(a2 − b2) ] = 1 / ( b2 − a2 )
⇒ y = −ab
Final Answer
∴ The solution of the given system of equations is:
x = ab and y = −ab
Conclusion
Thus, by using the cross-multiplication method, we find that the solution of the given system of linear equations is (ab, −ab).