Check whether g(t) = t² − 3 is a factor of f(t) = 2t⁴ + 3t³ − 2t² − 9t − 12 using division algorithm
Video Explanation
Watch the video explanation below:
Solution
Given:
g(t) = t² − 3
f(t) = 2t⁴ + 3t³ − 2t² − 9t − 12
Step 1: Apply the Division Algorithm
According to the division algorithm,
f(t) = g(t) · q(t) + r(t)
where the degree of r(t) is less than the degree of g(t).
Step 2: Divide f(t) by g(t)
2t⁴ + 3t³ − 2t² − 9t − 12 ÷ (t² − 3)
First term:
2t⁴ ÷ t² = 2t²
Multiply:
2t²(t² − 3) = 2t⁴ − 6t²
Subtract:
(2t⁴ + 3t³ − 2t²) − (2t⁴ − 6t²)
= 3t³ + 4t²
Bring down −9t − 12:
3t³ + 4t² − 9t − 12
Next term:
3t³ ÷ t² = 3t
Multiply:
3t(t² − 3) = 3t³ − 9t
Subtract:
(3t³ + 4t² − 9t − 12) − (3t³ − 9t)
= 4t² − 12
Next term:
4t² ÷ t² = 4
Multiply:
4(t² − 3) = 4t² − 12
Subtract:
(4t² − 12) − (4t² − 12) = 0
Step 3: Identify Quotient and Remainder
Quotient, q(t) = 2t² + 3t + 4
Remainder, r(t) = 0
Final Answer
Since the remainder is zero, g(t) = t² − 3 is a factor of f(t).
Conclusion
Thus, by applying the division algorithm, we conclude that g(t) = t² − 3 is a factor of the polynomial f(t) = 2t⁴ + 3t³ − 2t² − 9t − 12.