Find all zeroes of the polynomial 3x³ + 10x² − 9x − 4, if one of its zeroes is 1
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = 3x³ + 10x² − 9x − 4
Given that x = 1 is a zero of the polynomial.
Step 1: Verify x = 1 Using Factor Theorem
f(1) = 3(1)³ + 10(1)² − 9(1) − 4
= 3 + 10 − 9 − 4
= 0
∴ x − 1 is a factor of f(x)
Step 2: Divide the Polynomial by (x − 1)
3x³ + 10x² − 9x − 4 ÷ (x − 1)
Using synthetic division:
1 | 3 10 −9 −4
3 13 4
——————————–
3 13 4 0
∴ Quotient = 3x² + 13x + 4
Step 3: Find the Remaining Zeroes
Solve:
3x² + 13x + 4 = 0
Factorising:
3x² + 12x + x + 4 = 0
3x(x + 4) + 1(x + 4) = 0
(3x + 1)(x + 4) = 0
∴ x = −1/3 or x = −4
Final Answer
The zeroes of the given polynomial are:
x = 1, −1/3 and −4
Conclusion
Thus, all the zeroes of the polynomial 3x³ + 10x² − 9x − 4 are 1, −1/3 and −4.