Find all zeros of the polynomial 2x⁴ − 9x³ + 5x² + 3x − 1, if two of its zeroes are 2 + √3 and 2 − √3
Video Explanation
Watch the video explanation below:
Given
f(x) = 2x⁴ − 9x³ + 5x² + 3x − 1
Two zeroes of the polynomial are:
x = 2 + √3 and x = 2 − √3
To Find
All the zeroes of the given polynomial.
Solution
Step 1: Form the Factor Using Given Zeroes
Since 2 + √3 and 2 − √3 are zeroes, the corresponding factor is:
(x − (2 + √3))(x − (2 − √3))
= [(x − 2) − √3][(x − 2) + √3]
= (x − 2)² − (√3)²
= (x − 2)² − 3
= x² − 4x + 1
Step 2: Divide the Polynomial by (x² − 4x + 1)
Divide 2x⁴ − 9x³ + 5x² + 3x − 1 by x² − 4x + 1:
First term:
2x⁴ ÷ x² = 2x²
Multiply:
2x²(x² − 4x + 1) = 2x⁴ − 8x³ + 2x²
Subtract:
(2x⁴ − 9x³ + 5x²) − (2x⁴ − 8x³ + 2x²)
= −x³ + 3x²
Bring down +3x:
−x³ + 3x² + 3x
Next term:
−x³ ÷ x² = −x
Multiply:
−x(x² − 4x + 1) = −x³ + 4x² − x
Subtract:
(−x³ + 3x² + 3x) − (−x³ + 4x² − x)
= −x² + 4x
Bring down −1:
−x² + 4x − 1
Next term:
−x² ÷ x² = −1
Multiply:
−1(x² − 4x + 1) = −x² + 4x − 1
Subtract:
(−x² + 4x − 1) − (−x² + 4x − 1) = 0
Remainder is zero.
Quotient obtained:
2x² − x − 1
Step 3: Factorise the Quadratic Polynomial
2x² − x − 1 = 0
Splitting the middle term:
2x² − 2x + x − 1 = 0
2x(x − 1) + 1(x − 1) = 0
(2x + 1)(x − 1) = 0
∴ x = −1/2 or x = 1
Final Answer
All the zeroes of the given polynomial are:
2 + √3, 2 − √3, −1/2 and 1
Conclusion
Thus, the polynomial 2x⁴ − 9x³ + 5x² + 3x − 1 has four zeroes: 2 + √3, 2 − √3, −1/2 and 1.