Find all zeros of the polynomial 2x⁴ + 7x³ − 19x² − 14x + 30, if two of its zeroes are √2 and −√2
Video Explanation
Watch the video explanation below:
Given
f(x) = 2x⁴ + 7x³ − 19x² − 14x + 30
Two zeroes of the polynomial are:
x = √2 and x = −√2
To Find
All the zeroes of the given polynomial.
Solution
Step 1: Form the Factor Corresponding to the Given Zeroes
Since √2 and −√2 are zeroes, their corresponding factor is:
(x − √2)(x + √2)
= x² − (√2)²
= x² − 2
Step 2: Divide the Polynomial by (x² − 2)
Divide 2x⁴ + 7x³ − 19x² − 14x + 30 by x² − 2:
First term:
2x⁴ ÷ x² = 2x²
Multiply:
2x²(x² − 2) = 2x⁴ − 4x²
Subtract:
(2x⁴ + 7x³ − 19x²) − (2x⁴ − 4x²)
= 7x³ − 15x²
Bring down −14x:
7x³ − 15x² − 14x
Next term:
7x³ ÷ x² = 7x
Multiply:
7x(x² − 2) = 7x³ − 14x
Subtract:
(7x³ − 15x² − 14x) − (7x³ − 14x)
= −15x²
Bring down +30:
−15x² + 30
Next term:
−15x² ÷ x² = −15
Multiply:
−15(x² − 2) = −15x² + 30
Subtract:
(−15x² + 30) − (−15x² + 30) = 0
Remainder is zero, hence x² − 2 is a factor.
Quotient obtained:
2x² + 7x − 15
Step 3: Factorise the Quadratic Polynomial
2x² + 7x − 15 = 0
Splitting the middle term:
2x² + 10x − 3x − 15 = 0
2x(x + 5) − 3(x + 5) = 0
(2x − 3)(x + 5) = 0
∴ x = 3/2 or x = −5
Final Answer
All the zeroes of the given polynomial are:
√2, −√2, 3/2 and −5
Conclusion
Thus, the polynomial 2x⁴ + 7x³ − 19x² − 14x + 30 has four zeroes: √2, −√2, 3/2 and −5.