For what value of k is the polynomial f(x) = 3x⁴ − 9x³ + x² + 15x + k completely divisible by 3x² − 5
Video Explanation
Watch the video explanation below:
Given
f(x) = 3x⁴ − 9x³ + x² + 15x + k
Divisor = 3x² − 5
To Find
The value of k for which f(x) is completely divisible by 3x² − 5.
Concept Used
If a polynomial f(x) is completely divisible by another polynomial g(x), then the remainder obtained on division is zero.
According to the division algorithm:
f(x) = g(x) · q(x) + r(x)
Solution
Step 1: Divide f(x) by 3x² − 5
3x⁴ − 9x³ + x² + 15x + k ÷ (3x² − 5)
First term:
3x⁴ ÷ 3x² = x²
Multiply:
x²(3x² − 5) = 3x⁴ − 5x²
Subtract:
(3x⁴ − 9x³ + x²) − (3x⁴ − 5x²)
= −9x³ + 6x²
Bring down +15x:
−9x³ + 6x² + 15x
Next term:
−9x³ ÷ 3x² = −3x
Multiply:
−3x(3x² − 5) = −9x³ + 15x
Subtract:
(−9x³ + 6x² + 15x) − (−9x³ + 15x)
= 6x²
Bring down +k:
6x² + k
Next term:
6x² ÷ 3x² = 2
Multiply:
2(3x² − 5) = 6x² − 10
Subtract:
(6x² + k) − (6x² − 10)
= k + 10
Step 2: Use the Condition for Complete Divisibility
For f(x) to be completely divisible by 3x² − 5,
Remainder = 0
∴ k + 10 = 0
∴ k = −10
Final Answer
The value of k for which the polynomial is completely divisible by 3x² − 5 is:
k = −10
Conclusion
Hence, the polynomial f(x) = 3x⁴ − 9x³ + x² + 15x + k is completely divisible by 3x² − 5 when k = −10.