If α and β are the zeroes of the quadratic polynomial f(x) = ax² + bx + c, find the value of 1/(aα + b) + 1/(aβ + b)
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = ax² + bx + c
Let α and β be the zeroes of the given quadratic polynomial.
Step 1: Write the Known Relations
For a quadratic polynomial ax² + bx + c:
α + β = −b/a
αβ = c/a
Step 2: Simplify the Given Expression
1/(aα + b) + 1/(aβ + b)
= [(aβ + b) + (aα + b)] / [(aα + b)(aβ + b)]
= [a(α + β) + 2b] / [a²αβ + ab(α + β) + b²]
Step 3: Substitute the Values
Numerator:
a(α + β) + 2b = a(−b/a) + 2b = −b + 2b = b
Denominator:
a²αβ + ab(α + β) + b²
= a²(c/a) + ab(−b/a) + b²
= ac − b² + b² = ac
Step 4: Find the Required Value
1/(aα + b) + 1/(aβ + b)
= b/(ac)
Final Answer
The required value is b/(ac).
Conclusion
Thus, using the relationship between zeroes and coefficients of the quadratic polynomial, the value of 1/(aα + b) + 1/(aβ + b) is b/(ac).