If α and β are the zeroes of the quadratic polynomial f(x) = ax² + bx + c, find the value of a(α²/β + β²/α) + b(α/β + β/α)
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = ax² + bx + c
Let α and β be the zeroes of the given quadratic polynomial.
Step 1: Write the Known Relations
For a quadratic polynomial ax² + bx + c:
α + β = −b/a
αβ = c/a
Step 2: Simplify Each Term
α²/β + β²/α
= (α³ + β³)/αβ
α³ + β³ = (α + β)³ − 3αβ(α + β)
∴ α²/β + β²/α
= {(α + β)³ − 3αβ(α + β)} / αβ
Similarly,
α/β + β/α = (α² + β²)/αβ
= {(α + β)² − 2αβ} / αβ
Step 3: Substitute the Values
Substitute α + β = −b/a and αβ = c/a
a(α²/β + β²/α)
= a[(α + β)³/αβ − 3(α + β)]
b(α/β + β/α)
= b[(α + β)²/αβ − 2]
Adding both expressions:
a(α²/β + β²/α) + b(α/β + β/α)
= a(α + β)³/αβ + b(α + β)²/αβ − 3a(α + β) − 2b
= [a(α + β)³ + b(α + β)²]/αβ − 3a(α + β) − 2b
Now,
a(α + β)³ + b(α + β)² = 0
So the expression becomes:
= −3a(α + β) − 2b
= −3a(−b/a) − 2b
= 3b − 2b
= b
Final Answer
The required value is b.
Conclusion
Thus, using the relationship between zeroes and coefficients of the quadratic polynomial, the value of a(α²/β + β²/α) + b(α/β + β/α) is b.