If α and β are the zeros of the polynomial f(x) = ax² + bx + c, find the value of 1/α² + 1/β²
Video Explanation
Watch the video explanation below:
Given
f(x) = ax² + bx + c
α and β are the zeros of the polynomial.
To Find
The value of 1/α² + 1/β².
Solution
For a quadratic polynomial ax² + bx + c:
α + β = −b/a
αβ = c/a
Step 1: Use the Identity
1/α² + 1/β² = (α² + β²)/(αβ)²
α² + β² = (α + β)² − 2αβ
Step 2: Substitute the Values
α² + β² = (−b/a)² − 2(c/a)
= b²/a² − 2c/a
(αβ)² = (c/a)²
Step 3: Find the Required Value
1/α² + 1/β² = (b²/a² − 2c/a) ÷ (c²/a²)
= (b² − 2ac) / c²
Final Answer
1/α² + 1/β² = (b² − 2ac) / c²
Conclusion
Hence, if α and β are the zeros of the polynomial f(x) = ax² + bx + c, then the value of 1/α² + 1/β² is (b² − 2ac) / c².