If α and β are the zeros of the polynomial f(x) = x² − p(x + 1) − c, find the value of (α + 1)(β + 1)
Video Explanation
Watch the video explanation below:
Given
f(x) = x² − p(x + 1) − c
α and β are the zeros of the polynomial.
To Find
The value of (α + 1)(β + 1).
Solution
Step 1: Simplify the Given Polynomial
f(x) = x² − p(x + 1) − c
= x² − px − p − c
Comparing with the standard form ax² + bx + c:
a = 1, b = −p, constant term = −(p + c)
Step 2: Find α + β and αβ
For a quadratic polynomial:
α + β = −b/a
αβ = constant term / a
∴ α + β = −(−p)/1 = p
αβ = −(p + c)
Step 3: Find (α + 1)(β + 1)
(α + 1)(β + 1) = αβ + α + β + 1
= [−(p + c)] + p + 1
= 1 − c
Final Answer
(α + 1)(β + 1) = 1 − c
Conclusion
Hence, if α and β are the zeros of the polynomial f(x) = x² − p(x + 1) − c, then the value of (α + 1)(β + 1) is 1 − c.