If α, β and γ are the zeros of the polynomial f(x) = ax³ + bx² + cx + d, find the value of α² + β² + γ²
Video Explanation
Watch the video explanation below:
Given
f(x) = ax³ + bx² + cx + d
α, β and γ are the zeros of the polynomial.
To Find
The value of α² + β² + γ².
Solution
For a cubic polynomial:
ax³ + bx² + cx + d
The relationships between zeros and coefficients are:
α + β + γ = −b/a
αβ + βγ + γα = c/a
αβγ = −d/a
Step 1: Use the Identity
α² + β² + γ² = (α + β + γ)² − 2(αβ + βγ + γα)
Step 2: Substitute the Values
= (−b/a)² − 2(c/a)
= b²/a² − 2c/a
Step 3: Write in Simplified Form
α² + β² + γ² = (b² − 2ac) / a²
Final Answer
α² + β² + γ² = (b² − 2ac) / a²
Conclusion
Hence, if α, β and γ are the zeros of the polynomial f(x) = ax³ + bx² + cx + d, then the value of α² + β² + γ² is (b² − 2ac) / a².