If α and β are the zeroes of the quadratic polynomial f(x) = ax² + bx + c, find the value of α − β
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = ax² + bx + c
Let α and β be the zeroes of the given quadratic polynomial.
Step 1: Write the Known Relations
For a quadratic polynomial ax² + bx + c:
α + β = −b/a
αβ = c/a
Step 2: Use the Identity for (α − β)²
(α − β)² = (α + β)² − 4αβ
= (−b/a)² − 4(c/a)
= b²/a² − 4c/a
= (b² − 4ac)/a²
Step 3: Find the Value of α − β
Taking square root on both sides:
α − β = √(b² − 4ac)/a
Final Answer
The value of α − β = √(b² − 4ac) / a.
Conclusion
Thus, the difference of the zeroes of the quadratic polynomial ax² + bx + c is √(b² − 4ac) / a.