If the zeroes of the polynomial f(x) = ax³ + 3bx² + 3cx + d are in A.P., prove that 2b³ − 3abc + a²d = 0
Video Explanation
Watch the video explanation below:
Proof
Given polynomial:
f(x) = ax³ + 3bx² + 3cx + d
Let the zeroes of the polynomial be in A.P.
∴ Let the zeroes be: (p − q), p, (p + q)
Step 1: Use the Relationship Between Zeroes and Coefficients
For a cubic polynomial ax³ + Bx² + Cx + D:
Sum of zeroes = −B/a
Sum of products of zeroes taken two at a time = C/a
Product of zeroes = −D/a
Comparing f(x) = ax³ + 3bx² + 3cx + d with ax³ + Bx² + Cx + D:
B = 3b, C = 3c, D = d
Step 2: Form Equations Using A.P. Zeroes
Sum of zeroes:
(p − q) + p + (p + q) = 3p
∴ 3p = −3b/a
∴ p = −b/a
Sum of products of zeroes taken two at a time:
(p − q)p + p(p + q) + (p − q)(p + q)
= 3p² − q²
∴ 3p² − q² = 3c/a
Substituting p = −b/a:
3(b²/a²) − q² = 3c/a
∴ q² = 3(b² − ac)/a²
Step 3: Use the Product of Zeroes
Product of zeroes:
(p − q)p(p + q) = p(p² − q²)
= −d/a
Substituting p = −b/a and q² = 3(b² − ac)/a²:
(−b/a) [ (b²/a²) − 3(b² − ac)/a² ]
= −d/a
(−b/a) [ (−2b² + 3ac)/a² ] = −d/a
∴ b(2b² − 3ac) = a²d
∴ 2b³ − 3abc + a²d = 0
Hence Proved
2b³ − 3abc + a²d = 0
Conclusion
Thus, if the zeroes of the cubic polynomial f(x) = ax³ + 3bx² + 3cx + d are in arithmetic progression, then the relation 2b³ − 3abc + a²d = 0 is satisfied.