If the zeros of the polynomial f(x) = x³ − 3px² + qx − r are in A.P., find the required condition
Video Explanation
Watch the video explanation below:
Given
f(x) = x³ − 3px² + qx − r
The zeros of the polynomial are in Arithmetic Progression (A.P.).
To Find
The condition among p, q and r.
Solution
Step 1: General Condition for Zeros in A.P.
For a cubic polynomial:
x³ + ax² + bx + c
If its zeros are in A.P., then the condition is:
2a³ − 9ab + 27c = 0
Step 2: Compare with the Given Polynomial
Given polynomial:
x³ − 3px² + qx − r
Comparing with x³ + ax² + bx + c, we get:
a = −3p
b = q
c = −r
Step 3: Substitute in the Condition
2a³ − 9ab + 27c = 0
⇒ 2(−3p)³ − 9(−3p)(q) + 27(−r) = 0
⇒ 2(−27p³) + 27pq − 27r = 0
⇒ −54p³ + 27pq − 27r = 0
Dividing throughout by 27:
−2p³ + pq − r = 0
or
2p³ − pq + r = 0
Final Answer
The required condition is:
2p³ − pq + r = 0
Conclusion
Hence, if the zeros of the polynomial f(x) = x³ − 3px² + qx − r are in Arithmetic Progression, then the condition among p, q and r is 2p³ − pq + r = 0.