If α and β are the zeroes of the quadratic polynomial f(x) = ax² + bx + c, find the value of α⁴ + β⁴
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = ax² + bx + c
Let α and β be the zeroes of the given quadratic polynomial.
Step 1: Write the Known Relations
For a quadratic polynomial ax² + bx + c:
α + β = −b/a
αβ = c/a
Step 2: Use the Identity for α⁴ + β⁴
α⁴ + β⁴ = (α² + β²)² − 2α²β²
Also,
α² + β² = (α + β)² − 2αβ
Step 3: Substitute the Values
α² + β² = (−b/a)² − 2(c/a)
= (b² − 2ac)/a²
α²β² = (αβ)² = c²/a²
Step 4: Final Calculation
α⁴ + β⁴
= [(b² − 2ac)/a²]² − 2(c²/a²)
= (b⁴ − 4ab²c + 4a²c²)/a⁴ − 2c²/a²
= (b⁴ − 4ab²c + 2a²c²)/a⁴
Final Answer
The required value is (b⁴ − 4ab²c + 2a²c²) / a⁴.
Conclusion
Thus, using the relationship between zeroes and coefficients of the quadratic polynomial, the value of α⁴ + β⁴ is (b⁴ − 4ab²c + 2a²c²) / a⁴.