If α and β are the zeroes of the quadratic polynomial f(x) = ax² + bx + c, find the value of β/(aα + b) + α/(aβ + b)
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = ax² + bx + c
Let α and β be the zeroes of the given quadratic polynomial.
Step 1: Write the Known Relations
For a quadratic polynomial ax² + bx + c:
α + β = −b/a
αβ = c/a
Step 2: Combine the Given Expression
β/(aα + b) + α/(aβ + b)
= [β(aβ + b) + α(aα + b)] / [(aα + b)(aβ + b)]
= [a(α² + β²) + b(α + β)] / [a²αβ + ab(α + β) + b²]
Step 3: Substitute the Values
α² + β² = (α + β)² − 2αβ
= (−b/a)² − 2(c/a)
= b²/a² − 2c/a
Numerator:
a(α² + β²) + b(α + β)
= a(b²/a² − 2c/a) + b(−b/a)
= b²/a − 2c − b²/a
= −2c
Denominator:
a²αβ + ab(α + β) + b²
= a²(c/a) + ab(−b/a) + b²
= ac − b² + b²
= ac
Step 4: Find the Required Value
β/(aα + b) + α/(aβ + b)
= (−2c)/(ac)
= −2/a
Final Answer
The required value is −2/a.
Conclusion
Thus, using the relationship between zeroes and coefficients of the quadratic polynomial, the value of β/(aα + b) + α/(aβ + b) is −2/a.