If α and β are the zeros of the quadratic polynomial f(x) = x² − 2x + 3, find the polynomial whose roots are (α − 1)/(α + 1) and (β − 1)/(β + 1)
Video Explanation
Watch the video explanation below:
Solution
Given polynomial:
f(x) = x² − 2x + 3
Step 1: Find α + β and αβ
Comparing f(x) = x² − 2x + 3 with ax² + bx + c:
a = 1, b = −2, c = 3
α + β = −b/a = 2
αβ = c/a = 3
Step 2: Find the Sum of the New Roots
Sum of new roots:
(α − 1)/(α + 1) + (β − 1)/(β + 1)
= [(α − 1)(β + 1) + (β − 1)(α + 1)] / [(α + 1)(β + 1)]
= [αβ + α − β − 1 + αβ + β − α − 1] / [αβ + α + β + 1]
= (2αβ − 2) / (αβ + α + β + 1)
= (2 × 3 − 2) / (3 + 2 + 1)
= 4/6 = 2/3
Step 3: Find the Product of the New Roots
Product of new roots:
[(α − 1)/(α + 1)] × [(β − 1)/(β + 1)]
= (αβ − α − β + 1) / (αβ + α + β + 1)
= (3 − 2 + 1) / 6
= 2/6 = 1/3
Step 4: Form the Required Polynomial
The quadratic polynomial whose roots are (α − 1)/(α + 1) and (β − 1)/(β + 1) is:
x² − (sum of roots)x + (product of roots)
= x² − (2/3)x + 1/3
Multiplying throughout by 3:
3x² − 2x + 1
Final Answer
The required polynomial is 3x² − 2x + 1.
Conclusion
Thus, the quadratic polynomial whose roots are (α − 1)/(α + 1) and (β − 1)/(β + 1) is 3x² − 2x + 1.