If α, β and γ are the zeros of the polynomial f(x) = x³ − px² + qx − r, find the value of 1/αβ + 1/βγ + 1/γα
Video Explanation
Watch the video explanation below:
Given
f(x) = x³ − px² + qx − r
α, β and γ are the zeros of the polynomial.
To Find
The value of 1/αβ + 1/βγ + 1/γα.
Solution
For the cubic polynomial:
x³ − px² + qx − r
The relationships between zeros and coefficients are:
α + β + γ = p
αβ + βγ + γα = q
αβγ = r
Step 1: Write the Required Expression
1/αβ + 1/βγ + 1/γα
= (α + β + γ) / (αβγ)
Step 2: Substitute the Values
= p / r
Final Answer
1/αβ + 1/βγ + 1/γα = p/r
Conclusion
Hence, if α, β and γ are the zeros of the polynomial f(x) = x³ − px² + qx − r, then the value of 1/αβ + 1/βγ + 1/γα is p/r.