Obtain all zeros of the polynomial f(x) = x⁴ − 3x³ − x² + 9x − 6, if two of its zeros are −√3 and √3
Video Explanation
Watch the video explanation below:
Given
f(x) = x⁴ − 3x³ − x² + 9x − 6
Two zeroes of the polynomial are:
x = −√3 and x = √3
To Find
All the zeroes of the given polynomial.
Solution
Step 1: Use the Fact That ±√3 Are Zeroes
Since −√3 and √3 are zeroes of f(x), their corresponding factor is:
(x − √3)(x + √3) = x² − (√3)² = x² − 3
Step 2: Divide f(x) by x² − 3
We divide the polynomial x⁴ − 3x³ − x² + 9x − 6 by x² − 3.
First term:
x⁴ ÷ x² = x²
Multiply:
x²(x² − 3) = x⁴ − 3x²
Subtract:
(x⁴ − 3x³ − x²) − (x⁴ − 3x²) = −3x³ + 2x²
Bring down next terms:
−3x³ + 2x² + 9x − 6
Next term:
−3x³ ÷ x² = −3x
Multiply:
−3x(x² − 3) = −3x³ + 9x
Subtract:
(−3x³ + 2x² + 9x) − (−3x³ + 9x) = 2x²
Bring down −6:
2x² − 6
Next term:
2x² ÷ x² = 2
Multiply:
2(x² − 3) = 2x² − 6
Subtract:
(2x² − 6) − (2x² − 6) = 0
So remainder = 0.
Quotient = x² − 3x + 2
Step 3: Find the Remaining Zeroes
Now solve the quadratic x² − 3x + 2 = 0
Factorising:
x² − 3x + 2 = (x − 1)(x − 2)
∴ x = 1 or x = 2
Final Answer
All the zeroes of the given polynomial are:
−√3, √3, 1 and 2
Conclusion
Thus, the polynomial f(x) = x⁴ − 3x³ − x² + 9x − 6 has four zeroes: −√3, √3, 1 and 2.