Solve the System of Linear Equations Using Cross-Multiplication Method
Video Explanation
Watch the video below to understand the complete solution step by step:
Solution
Question: Solve the following system of equations using cross-multiplication method:
2ax + 3by = a + 2b …… (1)
3ax + 2by = 2a + b …… (2)
Step 1: Write Equations in Standard Form
2ax + 3by − (a + 2b) = 0 …… (1)
3ax + 2by − (2a + b) = 0 …… (2)
Step 2: Compare with ax + by + c = 0
From equation (1): a1 = 2a, b1 = 3b, c1 = −(a + 2b)
From equation (2): a2 = 3a, b2 = 2b, c2 = −(2a + b)
Step 3: Apply Cross-Multiplication Formula
x / (b1c2 − b2c1) = y / (a2c1 − a1c2) = 1 / (a1b2 − a2b1)
Substitute values:
x / [ 3b(−(2a + b)) − 2b(−(a + 2b)) ] = y / [ 3a(−(a + 2b)) − 2a(−(2a + b)) ] = 1 / [ (2a)(2b) − (3a)(3b) ]
x / ( −6ab − 3b2 + 2ab + 4b2 ) = y / ( −3a2 − 6ab + 4a2 + 2ab ) = 1 / ( 4ab − 9ab )
x / ( b2 − 4ab ) = y / ( a2 − 4ab ) = 1 / ( −5ab )
Step 4: Find the Values of x and y
x / ( b2 − 4ab ) = 1 / ( −5ab )
⇒ x = (4ab − b2) / (5ab)
⇒ x = (4a − b) / (5a)
y / ( a2 − 4ab ) = 1 / ( −5ab )
⇒ y = (4ab − a2) / (5ab)
⇒ y = (4b − a) / (5b)
Final Answer
∴ The solution of the given system of equations is:
x = (4a − b) / (5a)
y = (4b − a) / (5b)
Conclusion
Thus, by using the cross-multiplication method, we find that the solution of the given system of linear equations is ( (4a − b)/(5a), (4b − a)/(5b) ).