Solve the System of Linear Equations Using Cross-Multiplication Method
Video Explanation
Watch the video below to understand the complete solution step by step:
Solution
Question: Solve the following system of equations using cross-multiplication method:
6(ax + by) = 3a + 2b …… (1)
6(bx − ay) = 3b − 2a …… (2)
Step 1: Simplify the Given Equations
From equation (1):
ax + by = (3a + 2b)/6
⇒ 6ax + 6by − 3a − 2b = 0 …… (1)
From equation (2):
bx − ay = (3b − 2a)/6
⇒ 6bx − 6ay − 3b + 2a = 0 …… (2)
Step 2: Compare with ax + by + c = 0
From equation (1): a1 = 6a, b1 = 6b, c1 = −(3a + 2b)
From equation (2): a2 = 6b, b2 = −6a, c2 = −(3b − 2a)
Step 3: Apply Cross-Multiplication Formula
x / (b1c2 − b2c1) = y / (a2c1 − a1c2) = 1 / (a1b2 − a2b1)
Substitute values:
x / [ 6b(−(3b − 2a)) − (−6a)(−(3a + 2b)) ] = y / [ 6b(−(3a + 2b)) − 6a(−(3b − 2a)) ] = 1 / [ 6a(−6a) − 6b(6b) ]
x / [ −18b2 + 12ab − 18a2 − 12ab ] = y / [ −18ab − 12b2 + 18ab − 12a2 ] = 1 / [ −36(a2 + b2) ]
x / [ −18(a2 + b2) ] = y / [ −12(a2 + b2) ] = 1 / [ −36(a2 + b2) ]
Step 4: Find the Values of x and y
x / [ −18(a2 + b2) ] = 1 / [ −36(a2 + b2) ]
⇒ x = 1/2
y / [ −12(a2 + b2) ] = 1 / [ −36(a2 + b2) ]
⇒ y = 1/3
Final Answer
∴ The solution of the given system of equations is:
x = 1/2 and y = 1/3
Conclusion
Thus, by using the cross-multiplication method, we find that the solution of the given system of linear equations is (1/2, 1/3).