Solve the System of Linear Equations Using Cross-Multiplication Method
Video Explanation
Watch the video below to understand the complete solution step by step:
Solution
Question: Solve the following system of equations using cross-multiplication method:
bx + cy = a + b …… (1)
ax{1/(a − b) − 1/(a + b)} + cy{1/(b − a) − 1/(b + a)} = 2a/(a + b) …… (2)
Step 1: Simplify Equation (2)
1/(a − b) − 1/(a + b) = (2b)/(a2 − b2)
1/(b − a) − 1/(b + a) = (−2a)/(a2 − b2)
Substitute in equation (2):
ax · (2b)/(a2 − b2) − cy · (2a)/(a2 − b2) = 2a/(a + b)
Multiply both sides by (a2 − b2):
2abx − 2acy = 2a(a − b)
⇒ bx − cy = a − b …… (2)
Step 2: Write Equations in Standard Form
bx + cy − (a + b) = 0 …… (1)
bx − cy − (a − b) = 0 …… (2)
Step 3: Compare with ax + by + c = 0
From equation (1): a1 = b, b1 = c, c1 = −(a + b)
From equation (2): a2 = b, b2 = −c, c2 = −(a − b)
Step 4: Apply Cross-Multiplication Formula
x / (b1c2 − b2c1) = y / (a2c1 − a1c2) = 1 / (a1b2 − a2b1)
Substitute values:
x / [ c(−(a − b)) − (−c)(−(a + b)) ] = y / [ b(−(a + b)) − b(−(a − b)) ] = 1 / [ b(−c) − b(c) ]
x / ( −c(a − b) − c(a + b) ) = y / ( −b(a + b) + b(a − b) ) = 1 / ( −2bc )
x / ( −2ac ) = y / ( −2b2 ) = 1 / ( −2bc )
Step 5: Find the Values of x and y
x / ( −2ac ) = 1 / ( −2bc )
⇒ x = a/b
y / ( −2b2 ) = 1 / ( −2bc )
⇒ y = b/c
Final Answer
∴ The solution of the given system of equations is:
x = a/b and y = b/c
Conclusion
Thus, by using the cross-multiplication method, we find that the solution of the given system of linear equations is (a/b, b/c).