Solve the System of Linear Equations Using Cross-Multiplication Method
Video Explanation
Watch the video below to understand the complete solution step by step:
Solution
Question: Solve the following system of equations using cross-multiplication method:
x{ a − b + ab/(a − b) } = y{ a + b − ab/(a − b) } …… (1)
x + y = 2a2 …… (2)
Step 1: Simplify Equation (1)
Take LCM (a − b):
x{ (a − b)2 + ab } / (a − b) = y{ (a + b)(a − b) − ab } / (a − b)
x( a2 − ab + b2 ) = y( a2 − ab − b2 )
⇒ (a2 − ab + b2)x − (a2 − ab − b2)y = 0 …… (1)
Step 2: Write Equations in Standard Form
(a2 − ab + b2)x − (a2 − ab − b2)y = 0 …… (1)
x + y − 2a2 = 0 …… (2)
Step 3: Compare with ax + by + c = 0
From equation (1): a1 = (a2 − ab + b2), b1 = −(a2 − ab − b2), c1 = 0
From equation (2): a2 = 1, b2 = 1, c2 = −2a2
Step 4: Apply Cross-Multiplication Formula
x / (b1c2 − b2c1) = y / (a2c1 − a1c2) = 1 / (a1b2 − a2b1)
Substitute values:
x / [ −(a2 − ab − b2)(−2a2) ] = y / [ −(a2 − ab + b2)(−2a2) ] = 1 / [ 2a2(a2 + b2) ]
x / [ 2a2(a2 − ab − b2) ] = y / [ 2a2(a2 − ab + b2) ] = 1 / [ 2a2(a2 + b2) ]
Step 5: Find the Values of x and y
x = (a2 − ab − b2) / (a2 + b2)
y = (a2 − ab + b2) / (a2 + b2)
Final Answer
∴ The solution of the given system of equations is:
x = (a2 − ab − b2) / (a2 + b2)
y = (a2 − ab + b2) / (a2 + b2)
Conclusion
Thus, by using the cross-multiplication method, we find that the solution of the given system of linear equations is ( (a2 − ab − b2) / (a2 + b2), (a2 − ab + b2) / (a2 + b2) ).