Solve the System of Linear Equations Using Cross-Multiplication Method

Video Explanation

Watch the video below to understand the complete solution step by step:

Solution

Question: Solve the following system of equations using cross-multiplication method:

x{ a − b + ab/(a − b) } = y{ a + b − ab/(a − b) }  …… (1)

x + y = 2a2  …… (2)

Step 1: Simplify Equation (1)

Take LCM (a − b):

x{ (a − b)2 + ab } / (a − b) = y{ (a + b)(a − b) − ab } / (a − b)

x( a2 − ab + b2 ) = y( a2 − ab − b2 )

⇒ (a2 − ab + b2)x − (a2 − ab − b2)y = 0  …… (1)

Step 2: Write Equations in Standard Form

(a2 − ab + b2)x − (a2 − ab − b2)y = 0  …… (1)

x + y − 2a2 = 0  …… (2)

Step 3: Compare with ax + by + c = 0

From equation (1): a1 = (a2 − ab + b2), b1 = −(a2 − ab − b2), c1 = 0

From equation (2): a2 = 1, b2 = 1, c2 = −2a2

Step 4: Apply Cross-Multiplication Formula

x / (b1c2 − b2c1) = y / (a2c1 − a1c2) = 1 / (a1b2 − a2b1)

Substitute values:

x / [ −(a2 − ab − b2)(−2a2) ] = y / [ −(a2 − ab + b2)(−2a2) ] = 1 / [ 2a2(a2 + b2) ]

x / [ 2a2(a2 − ab − b2) ] = y / [ 2a2(a2 − ab + b2) ] = 1 / [ 2a2(a2 + b2) ]

Step 5: Find the Values of x and y

x = (a2 − ab − b2) / (a2 + b2)

y = (a2 − ab + b2) / (a2 + b2)

Final Answer

∴ The solution of the given system of equations is:

x = (a2 − ab − b2) / (a2 + b2)
y = (a2 − ab + b2) / (a2 + b2)

Conclusion

Thus, by using the cross-multiplication method, we find that the solution of the given system of linear equations is ( (a2 − ab − b2) / (a2 + b2), (a2 − ab + b2) / (a2 + b2) ).

Spread the love

Leave a Comment

Your email address will not be published. Required fields are marked *