What must be subtracted from the polynomial f(x) = x⁴ + 2x³ − 13x² − 12x + 21 so that the resulting polynomial is exactly divisible by x² − 4x + 3
Video Explanation
Watch the video explanation below:
Given
f(x) = x⁴ + 2x³ − 13x² − 12x + 21
Divisor = x² − 4x + 3
To Find
The polynomial that must be subtracted from f(x) so that it becomes exactly divisible by x² − 4x + 3.
Concept Used
According to the division algorithm,
f(x) = g(x) · q(x) + r(x)
If we subtract the remainder r(x) from f(x), then the resulting polynomial becomes exactly divisible by g(x).
Solution
Step 1: Divide f(x) by x² − 4x + 3
x⁴ + 2x³ − 13x² − 12x + 21 ÷ (x² − 4x + 3)
First term:
x⁴ ÷ x² = x²
Multiply:
x²(x² − 4x + 3) = x⁴ − 4x³ + 3x²
Subtract:
(x⁴ + 2x³ − 13x²) − (x⁴ − 4x³ + 3x²)
= 6x³ − 16x²
Bring down −12x:
6x³ − 16x² − 12x
Next term:
6x³ ÷ x² = 6x
Multiply:
6x(x² − 4x + 3) = 6x³ − 24x² + 18x
Subtract:
(6x³ − 16x² − 12x) − (6x³ − 24x² + 18x)
= 8x² − 30x
Bring down +21:
8x² − 30x + 21
Next term:
8x² ÷ x² = 8
Multiply:
8(x² − 4x + 3) = 8x² − 32x + 24
Subtract:
(8x² − 30x + 21) − (8x² − 32x + 24)
= 2x − 3
Step 2: Identify the Remainder
Remainder r(x) = 2x − 3
Step 3: Find the Required Polynomial
To make the given polynomial exactly divisible by x² − 4x + 3, we must subtract the remainder.
Required polynomial = r(x)
= 2x − 3
Final Answer
The polynomial that must be subtracted is:
2x − 3
Conclusion
Hence, if 2x − 3 is subtracted from the polynomial f(x) = x⁴ + 2x³ − 13x² − 12x + 21, the resulting polynomial becomes exactly divisible by x² − 4x + 3.